THE PHASE DIAGRAM AgI-PbI₂

R. BLACHNIK and U. STÖTER

Anorganische Chemie, FB Biologie/Chemie, Universität Osnabrück, Barbarastraße 7, D-4500 Osnabrück (F.R.G.)

(Received 6 June 1988)

ABSTRACT

The phase diagram $AgI-PbI_2$ was investigated by X-ray and difference thermoanalytical methods. Two high-temperature compounds, one based on Ag_3PbI_5 the other on $AgPb_4I_9$, were observed. The temperature of transformation of PbI_2 into the high-temperature 12R-PbI₂ modification is decreased by the addition of AgI.

INTRODUCTION

In recent years ternary silver iodides have become of increasing interest because some are good silver-ion conductors. However, systematic studies of the phase diagrams of AgI with other main group element iodides are rare, although new compounds are to be expected in these systems. This paper continues investigations begun on these systems [1].

The first information about the system $AgI-PbI_2$ was given by Tubandt and Eggert [2]. They reported a compound Ag_4PbI_6 which decomposes peritectically at 671 K. Frank et al. [3] obtained the $AgI-PbI_2$ phase diagram by taking thermal arrests from cooling curves. They detected the compound Ag_5PbI_7 and two regions of solid solubility, one lying between 81.5 and 42.5 mol.% AgI and the other being a mixed crystal, based on PbI_2 , with a maximum solubility of 15 mol.% AgI. According to their results, Ag_5PbI_7 decomposes peritectoidally at 675 K.

Recently, Brightwell investigated thoroughly the AgI-PbI₂ system [4-6] using difference thermal analysis, X-ray and electrical conductivity measurements. In the most recent version of the phase diagram he reported the formation of a high-temperature compound δ based on Ag₄PbI₆. The compound has a f.c.c. lattice with a = 633.5 pm. On cooling it decomposes to β -AgI and PbI₂, accompanied by the transient formation of a compound with the approximate composition Ag₂PbI₄.

In order to clarify the differences between the above results, the system $AgI-PbI_2$ was investigated by means of difference thermal analysis and various X-ray methods.

EXPERIMENTAL

 PbI_2 was prepared by sealing and fusing stoichiometric amounts of the components (Pb, Preussag, 99.999%; I_2 , Merck, sublimed twice) in an evacuated silica ampoule. AgI (Degussa, p.a.) was used after drying in vacuo at 400 K. Both iodides were mixed in the desired amounts, in steps of 5 mol.%, and the mixtures were sealed under vacuum in silica ampoules. The mixtures were fused, homogenized by shaking and then annealed in three series at 373, 500 and 573 for six weeks.

The apparatus and the method [7] of the difference thermal analysis have already been described. The heating rate was 10 K min⁻¹. The accuracy of the liquidus temperatures is ± 5 K and that of the three phase equilibria lines ± 2 K. A differential scanning calorimeter (Dupont 990 thermal analyser) was used for the investigation of the low-temperature reactions. X-ray data of the powders were obtained with a Guinier camera (Huber 620) and high-temperature X-ray data were measured using a Simon-Guinier camera. In both cases Cu $K\alpha_1$ radiation was used.

RESULTS

The phase diagram $AgI-PbI_2$ is shown in Fig. 1. It contains two high-temperature compounds.

Fig. 1. The system AgI-PbI₂.

The first compound (δ) is formed by a eutectoid reaction between β -AgI and PbI₂ at 405 K and decomposes peritectically into α -AgI and melt at 671 K. The maximum area of the decomposition peak was found to be approximately 75 mol% AgI. High-temperature X-ray photographs of samples with 80 mol% AgI showed the presence of AgI between 408 and 423 K. In contrast to Brightwell's assumption we assume that the homogeneity range is centred around the composition Ag₃PbI₅. This is in agreement with the phase relations in the system AgI-SnI₂. The phase has a broad homogeneity region which stretches from Ag₄PbI₆ at higher temperatures to Ag₃PbI₅ at the lower decomposition temperature. It was not possible to quench this phase to room temperature. The reflections of a high-temperature X-ray photograph were indexed using the assumption of a f.c.c. lattice and a lattice parameter *a* of 628.9 pm at 423 K (compared with a value given by Brightwell [6] of 633.5 pm).

A second high-temperature compound (ϵ) was found at higher PbI₂ concentrations. The high-temperature X-ray photographs reveal that it is formed by a eutectoid reaction between δ and PbI₂ at 423 K. The compound decomposes peritectically at 625 K into melt and a mixed crystal with a 12R-PbI₂ structure. It cannot be quenched to room temperature. The reflections of the high-temperature X-ray photograph were too diffuse for

AgPb ₄ I ₉ (523 K)		Ag ₂ PbI ₄	Ag ₃ PbI ₅			
<i>d</i> (pm)	I/I_0	<i>d</i> (pm)	\overline{d}_{exp} (pm)	d _{calc} (pm)	I/I_0	hkl
696.8	60		363.0	363.0	10	111
384.1	40	385.4	314.0	314.4	100	200
315.2	100	314.7	222.4	222.3	100	220
288.1	40	286.5	181.5	181.5	70	222
239.9	10		157.4	157.2	10	400
234.6	20		140.9	140.6	40	420
228.2	70		128.3	128.4	20	422
219.2	70	218.5				
217.2	30					
197.3	10					
185.5	30	184.5				
176.1	20					
164.1	20					
158.7	20	157.6				
150.3	10	148.4				
144.3	20	143.7				
139.6	30					
132.2	10					
130.4	10					

X-ray data of $AgPb_{4}I_{9}$, $Ag_{7}PbI_{4}$ [5] and $Ag_{3}PbI_{5}$

TABLE 1

indexing of the pattern. A shift in the position of the X-ray reflections in the photographs with decreasing PbI_2 concentration indicates the existence of a homogeneity range for the compound; however, no exact width and position of this range can be given. By analogy to the system $AgI-SnI_2$ we suggest a composition based on $AgPb_4I_9$. The X-ray data of the compound at 523 K are given in Table 1.

All samples with more than 10 mol.% AgI, annealed at 373 K, consisted of β -AgI and PbI₂. The solubility of AgI in PbI₂ is low at 373 K (β -AgI was still found in samples with 95 mol.% PbI₂). It increases to approximately 5 mol.% at 500 K and 7 mol.% at 573 K. The X-ray data of PbI₂ in the mixtures, annealed at 373 K, revealed fewer lines than pure PbI₂. This effect could have been caused by long grinding of PbI₂, although we did not observe this effect in PbI₂ treated in the same way as the AgI-PbI₂ mixtures. A high-temperature X-ray photograph of pure PbI₂ indicates a phase transformation at 530 K, in agreement with the reported change into the 12R polytype [8–10]. There was a striking similarity between the X-ray pattern of this 12R-PbI₂ polytype and the X-ray pattern of PbI₂ mixtures annealed at 373 K. Only the 12R-PbI₂ pattern was observed in samples with AgI concentrations of between 2 and 10 mol.%, quenched from 573 and 500 K to room temperature. The transformation temperature of PbI₂ is thus substantially decreased by the incorporation of small amounts of Ag⁺ in the PbI₂ structure.

ACKNOWLEDGEMENT

We wish to express our gratitude to the "Fonds der chemischen Industrie" for financial support.

REFERENCES

- 1 R. Blachnik and U. Stöter, Thermochim. Acta, 112 (1987) 47.
- 2 C. Tubandt and S. Eggert, Z. Anorg. Allg. Chem., 110 (1920) 196.
- 3 E. Frank, E. Germann and C.F. Metz, J. Phys. Chem., 35 (1931) 1944.
- 4 J.W. Brightwell, C.N. Buckley and B. Ray, Solid State Commun. 42 (1982) 715.
- 5 J.W. Brightwell, C.N. Buckley, C.S. Miller and B. Ray, Solid State Ionics, 9-10 (1983) 1169.
- 6 J.W. Brightwell, C.N. Buckley and B. Ray, Solid State Ionics, 15 (1985) 61.
- 7 B. Gather, Dissertation, T.U. Clausthal, 1976.
- 8 T. Minagawa, J. Appl. Crystallogr. 12 (1979) 57.
- 9 S.K. Chaudhary and G.C. Trigunayat, Acta Crystallogr. Sect. B, 43 (1987) 225.
- 10 B. Palosz, S. Gierlotka, B. Wiktorowska and D. Dziag, Acta Crystallogr. Sect. C, 41 (1985) 1407.